INTERNATIONAL FRONTIER SEMINAR Nº 082

Dr. Koichiro Umemoto

Research Scientist Earth Life Science Institute Tokyo Institute of Technology

2021.3.18 (Fri.) 16:30 ~

Venue: Zoom

A link will be sent @grc-all within 30 minutes before the beginning of the seminar.

Temperature-induced order-disorder phase transition in the Mg-Si-O post-post-perovskite system by first principles

The highest-pressure form in the Earth of the major mantle silicate MgSiO₃-bridgmanite is post-perovskite (PPV). Knowledge of the fate of PPV at higher pressures relevant for super-Earth-type planets is fundamental for us to start modeling the internal structure and dynamics of these planets. First principles studies so far predicted that MgSiO₃ PPV undergoes the pressure-induced three-stage dissociations: MgSiO₃ PPv \rightarrow Mg₂SiO₄ + MgSi₂O₅ \rightarrow Mg₂SiO₄ + SiO₂ \rightarrow MgO + SiO₂ up to 4 TPa [1-3]. In these post-PPV Mg₂SiO₄ and MgSi₂O₅, oxygen arrangements around Mg and Si are very similar, expecting us new phase transitions which should be induced by temperature due to configurational entropy. Very recently, indeed, we predicted another type of phase transition, i.e., a temperature-induced order-disorder transition (ODT) in I-42d-type Mg₂GeO₄, a low-pressure analog of Mg₂SiO₄ [4]. In this talk, we will newly predict the similar ODT transitions in Mg₂SiO₄ and MgSi₂O₅ by first principles Boltzmann ensemble statistics calculations. We will calculate full phase boundaries of the post-PPV transitions in Mg-Si-O within the QHA. The predictions here will be guite important for modeling mantle dynamics in large super-Earths.

- [1] S. Q. Wu et al., J. Phys.: Condens. Matter, 26, 035402 (2014).
- [2] H. Niu et al., Scientic Reports 5, 18347 (2015).
- [3] K. Umemoto et al., Earth Planet. Sci. Lett. 478, 40-45 (2017).
- [4] K. Umemoto and R. M. Wentzcovitch, Phys. Rev. Materials 5, 093604 (2021).

